Noetic Geometry Framework
A geometric data oriented library unifying additive and multiplicative transports, Mellin coupling, submersion geometry, and FisherβRao pullbacks into a single coherent framework.
Originator & Lead Researcher: Sar Hamam
β¨ Overview
This library implements a research program proposed by Sar Hamam:
-
Dual transports
- Additive (Gaussian / heat semigroup)
- Multiplicative (Poisson via log-map and Haar measure)
-
Mellin coupling
- Canonical balance point at
s = 1/2 - Emerges from additiveβmultiplicative duality
- Canonical balance point at
-
Submersion backbone
- Smooth map
f=(Ο,Ο): M β βΒ² - Zero set
Z = fβ»ΒΉ(0)with transversality checks
- Smooth map
-
FisherβRao pullback
- Model-aware metrics from embeddings / logits
-
Sparse numerics
- k-NN graphs only
- Solvers: Conjugate Gradient (CG/PCG) and Lanczos
π¦ Installation
git clone https://github.com/Sarhamam/NoeticEidos.git
cd NoeticEidos
python -m venv venv && source venv/bin/activate
pip install -r requirements.txt
pip install -e . # Install package in development mode
π Quick Demo
import numpy as np
from graphs.knn import build_graph
from graphs.laplacian import laplacian
from solvers.lanczos import topk_eigs
from stats.spectra import spectral_gap, spectral_entropy
# toy dataset
rng = np.random.default_rng(0)
X = np.r_[rng.normal(0,1,(200,8)), rng.normal(3,0.5,(200,8))]
# additive geometry
G_plus = build_graph(X, mode="additive", k=16)
L_plus = laplacian(G_plus, normalized=True)
evals_plus, _ = topk_eigs(L_plus, k=16)
print("Additive gap:", spectral_gap(evals_plus))
# multiplicative geometry
G_times = build_graph(X, mode="multiplicative", k=16)
L_times = laplacian(G_times, normalized=True)
evals_times, _ = topk_eigs(L_times, k=16)
print("Multiplicative gap:", spectral_gap(evals_times))